Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Miljković, D., Petrović, J. \& Hadžić, P. (1978). Tetrahedron, 34, 3575-3577.
Petrović, J. A., Pejanović, V. M. \& Miljković, D. A. (1992). Proc. Nat. Sci. Matica Srpska, 83, 41-45.
Sheldrick, G. M. (1976). SHELX76. Program for Cṛistal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stanković, S., Stefanović, A., Bruvo, M. \& Altomare. A. (1992). Acta Cryst. C48, 2082-2085
Vicković, I. (1988). CSU. Crystal Structure Utility Program. University of Zagreb, Croatia.

Acta Cryst. (1998). C54, 1160-1162

1H-Tetrazol-5(4H)-one

Yoshio Ohno, ${ }^{a}$ Yoshiaki Akutsu, ${ }^{a}$ Mitsuru Aral, ${ }^{\text {a }}$ Masamitsu Tamura, ${ }^{a}$ Takehiro Matsunaga ${ }^{b}$ and Mitsuaki Ida ${ }^{b}$
${ }^{a}$ School of Engineering, The University of Tokvo, 7-3-1 Hongo Bunkyou-ku, Tokyo 113, Japan, and ${ }^{b}$ National Institute of Materials and Chemical Research, 1-1 Higasi Tsukuba, Ibaraki 305, Japan. E-mail: ohno@tamura.t.utokyo.ac.jp
(Received 8 September 1997; accepted 3 February 1998)

Abstract

The molecular structure determination of the title compound, $\mathrm{CH}_{2} \mathrm{~N}_{4} \mathrm{O}$, determined by X-ray crystallography reveals it to be $1 H$-tetrazol- $5(4 H)$-one, not 5-hydroxytetrazole which had been generally accepted; 1 H -tetrazol-5(4 H)-one is the keto form with $C_{2 v}$. symmetry. Ab initio calculations at the MP2/6-31G* level also indicate that 1 H -tetrazol $5(4 \mathrm{H})$-one is the most stable tautomer.

Comment

Four structural isomers, (1)-(4), can be written for the title compound. Hattori et al. (1953) reported that 5-hydroxytetrazole, (3), was the generally accepted form and that the crystal system was tetragonal. Furthermore, they studied another unstable form, the crystal system of which was probably triclinic (Hattori et al., 1953). However, recent studies suggested that isomer (1) is acceptable because this compound has a keto group. We have identified the molecular structure of this compound by X-ray crystallography.

(1)

(3)

(2)

(4)

The most stable isomer obtained in the solid state is the keto form with $C_{2 \text { r }}$. symmetry. The ring is essentially planar, the largest deviation from the leastsquares plane being $0.005 \AA(\mathrm{~N} 1)$. The bond lengths are quite different from normal ones. The N1-N2 length of 1.351 (2) \AA is clearly shorter than other $\mathrm{N}-\mathrm{N}$ single-bond lengths. The $\mathrm{N}-\mathrm{N}$ bond lengths in hydrazine $\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}\right)$ and $N, N, N^{\prime}, N^{\prime}$-tetramethylhydrazine $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$ are 1.449 and $1.42 \AA$, respectively (Sasada, 1984). Similarly, the C1-N2 bond length of $1.348(2) \AA$ is shorter than that of $1.47 \AA$ in ethylenediamine $\left(\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}\right)$ and that of $1.46 \AA$ in $N, N, N^{\prime}, N^{\prime}$-tetramethylhydrazine. Also, the $\mathrm{N} 1=\mathrm{N} 1^{*}$ double-bond length of 1.275 (3) \AA is longer than the normal ones; for example, the $\mathrm{N}=\mathrm{N}$ bond length in azomethane $\left(\mathrm{CH}_{3} \mathrm{~N}=\mathrm{NCH}_{3}\right)$ is $1.247 \AA$ (Sasada, 1984). Such intermediate lengths between single- and doublebond lengths should arise because the electrons in the π orbitals are delocalized over the ring. The $\mathrm{Cl}=\mathrm{Ol}$ bond length of $1.241(3) \AA$ is longer than expected; for example, that in acetone is $1.213 \AA$. However, this is not due to the delocalization of the electrons, but to intermolecular electrostatic interactions. The shortest intermolecular distance between the O atom and an H atom is $1.93 \AA$.

Fig. 1. View of the title molecule with the atomic numbering scheme and with non-H atoms represented by 50% probability ellipsoids. Superscript * denotes the symmetry transformation $\therefore, x,-z$, i.e. code (i) in Table 2.

Ab initio calculations also support the observation that isomer (1) is the most stable, although they do not consider the intermolecular interaction. At the MP2/6$31 G^{*}$ level, the relative energies of isomers (2), (3) and (4) with respect to that of the isomer (1) are 123.3 , 71.4 and $26.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Isomer (2) has not been reported and the energy difference between isomer (1) and isomer (3) is sufficiently large so that isomer (3) also should not exist under normal temperature and pressure. A similar tendency was obtained at the HF/6$31 G^{*}$ level.

Fig. 2. Packing diagram illustrating the hydrogen bonds by thin lines.

Experimental

The compound was synthesized according to the published procedure of Moeller (1957). The crystal used for analysis was obtained by recrystallization from 2-propanol.

Crystal data

$\mathrm{CH}_{2} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=86.05$
Tetragonal
$P 4,2,2$
$a=5.4965$ (2) \AA
$c=11.137(1) \AA$
$V=336.45(3) \AA^{3}$
$Z=4$
$D_{x}=1.699 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.5-19.6^{\circ}$
$\mu=0.1464 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism
$0.26 \times 0.21 \times 0.20 \mathrm{~mm}$ Colourless
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.3^{\circ}$
ω scans with profile analysis Absorption correction: none 487 measured reflections
279 independent reflections
226 reflections with
$F>3 \sigma(F)$
$h=0 \rightarrow 7$
$k=0 \rightarrow 7$
$l=0 \rightarrow 10$
3 standard reflections every 100 reflections intensity decay: 0.54%

Refinement

Refinement on F
$R=0.028$
$w R=0.040$
$S=1.36$
226 reflections
30 parameters
H atoms not refined

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}\right)\right. \\
&\left.+0.000625\left|F_{o}\right|^{2}\right] \\
&(\Delta / \sigma)_{\max }=0.004
\end{aligned}
$$

$\Delta \rho_{\max }=0.132 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.124 \mathrm{e}^{-3}$
Extinction correction:
Zachariasen (1963) type
2 Gaussian isotropic
Extinction coefficient: 1040.7

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{e q}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} \alpha^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
01	0.3169 (2)	x	0	0.0371
N1	0.6901 (3)	0.8113 (3)	0.0385 (1)	0.0428
N2	0.4843 (3)	0.6862 (3)	0.0627 (1)	0.0333
Cl	0.4766 (3)	x	0	0.0273

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{Cl}$	$1.241(3)$	$\mathrm{N} 2-\mathrm{Cl}$	$1.348(2)$
$\mathrm{N} 1^{\prime}-\mathrm{N} 1$	$1.275(3)$	$\mathrm{N} 2-\mathrm{HI}$	0.83
$\mathrm{~N} 1-\mathrm{N} 2$	$1.351(2)$		
$\mathrm{N} 1-\mathrm{N} 1^{\prime}-\mathrm{N} 2$	$107.81(9)$	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{N} 2$	$128.8(1)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cl}$	$111.0(1)$	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{N}^{\prime}{ }^{\prime}$	$102.4(2)$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{N} 2-\mathrm{N} 1$	$179.7(1)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{N} 1^{\prime}-\mathrm{N} 2^{\prime}$	$-1.1(3)$
$\mathrm{N} 1^{1}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cl}$	$0.9(2)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cl}-\mathrm{N} 2^{\prime}$	$-0.34(10)$
Symmetry code: (i) $y, x,-z$			

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$
$\begin{array}{ccccc}D — \mathrm{H} \cdots A & D-\mathrm{H} & \mathrm{H} \cdots A & D \ldots A & D — \mathrm{H} \cdots A \\ \mathrm{~N} 2^{2}-\mathrm{H} \mathrm{I}^{\prime} \cdots \mathrm{Ol} & 0.83 & 1.93 & 2.758(2) & 171.2\end{array}$
Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (ii) $y-\frac{1}{2}, \frac{1}{2}-x, z-\frac{1}{4}$.
The structure was solved by direct methods and difference Fourier synthesis, and refined by full-matrix least-squares methods, with anisotropic displacement parameters for all nonH atoms. H atoms were located from a difference electrondensity map and included in the structure-factor calculations, but were not refined. All ab initio calculations were performed with the Gaussian 94 program package (Frisch et al., 1995). Structure (1) was optimized with $C_{2 v}$, symmetry; the other structures were obtained by full optimization.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: TEXSAN LS. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN FINISH.

The authors would like to thank Dr K. Waki for the synthesis, M. Goto for helpful support, and Dr K. Honda for support of the X-ray diffractometer work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1003). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frisch, M. J., Trucks, G. W.. Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T. A., Petersson, G. A., Montgomery, J. A.. Raghavachari. K.. Al-Laham. M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts. R.. Martin, R. L., Fox. D. J.. Binkley. J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzalez, C. \& Pople, J. A. (1995). Gaussian94. Revision A1. Gaussian Inc., Pittsburgh, PA, USA.
Hattori, K., Horwitz, J. P. \& Lieber, E. (1953). Anal. Chem. 25, 353354.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Moeller, T. (1957). Inorganic Synthesis, Vol. 6, p. 62. New York: McGraw Hill.
Molecular Structure Corporation (1989). TEXSAN. Single Crustal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sasada, Y. (1984). Kagaku Binran Kisohen 2, 3rd ed., pp. 649-683. Tokyo: Maruzen.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1998). C54, 1162-1164

(7R,8S,10bR)-7,8-Dihydroxy-1,5,6,7,8,9,-10,10b-octahydro-3H-1,3-oxazolo[4,3-a]iso-quinolin-3-one

Khalll A. Abboud, Gabor Butora, Stephen P. Fearnley, Andrew G. Gum, Michele R. Stabile and Tomas Hudlicky
Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA. E-mail: abboud@chem.ufl.edu

(Received 14 July 1997; accepted 16 December 1997)

Abstract

The title compound, $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$, was synthesized as an intermediate in a synthesis of the morphine skeleton. The two six-membered rings adopt ${ }^{4} \mathrm{H}_{3}$ half-chair conformations. The five-membered ring is in an envelope (E) conformation. Chains of the molecules hydro-

gen bonded through the allylic hydroxyl and carbonyl groups extend along the b axis. These chains are crosslinked along the [101] direction by hydrogen bonds between the adjacent secondary OH group and the allylic O atom [allylic $\mathrm{O} \cdots \mathrm{O}(x, 1+y, z) 2.836(2) \AA, \mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O} 133(2)^{\circ}$; secondary hydroxyl $\mathrm{O} \cdots \mathrm{O}\left(\frac{1}{2}+x, \frac{3}{2}-y\right.$, $1-z) 2.751(2) \AA, \mathrm{O}-\mathrm{H} \cdots \mathrm{O} 174(2)^{\circ} \mathrm{J}$.

Comment

In the past 40 years, numerous total syntheses of morphine have been published [for a recent review see Hudlicky et al. (1996), and references therein]. We recently reported a chemo-enzymatic synthesis of the morphine skeleton in which the title compound, (1), was synthesized in one of the intermediate steps (Butora et al., 1996). Attempts have been made to relate the absolute stereochemistry at Cl 10 b to either C 7 or C 8 using standard spectroscopic techniques. Careful couplingconstant analysis (${ }^{1} \mathrm{H}$ NMR, various solvents) suggested the absolute stereochemistry shown below. Although nuclear Overhauser enhancement experiments seemed to support these conclusions, final proof was sought from a single-crystal X-ray structure determination. As the absolute stereochemistry at C 7 and C 8 is set enzymatically (Stabile et al., 1995), this also provided proof of the absolute stereochemistry of (1) as shown.

(1)

The bond lengths and angles in (1) are in good agreement with counterparts observed in other organic compounds (Allen et al., 1987). The molecules of (1) have two six-membered rings fused through the $\mathrm{C} 6 \mathrm{a}=\mathrm{C} 10 \mathrm{a}$ double bond, which has the only zerovalue endocyclic torsion angle in either ring. The planar geometry around the double bond forces the ring conformations to deviate from a more stable chair conformation. Consequently, rings A and B adopt halfchair conformations which may be described as ${ }^{4} H_{3}$ according to Boeyens (1978) terminology. Ring A has C 8 and C 9 at distances of -0.465 (3) and 0.294 (3) \AA, respectively, from the plane of $\mathrm{C} 6 \mathrm{a}, \mathrm{C} 7, \mathrm{C} 10 \mathrm{a}$ and C10, while N 4 and C 5 are at distances of -0.340 (3) and 0.303 (4) \AA, respectively, from the plane of C6, $\mathrm{C} 6 \mathrm{a}, \mathrm{ClOa}$ and ClOb . Ring C adopts an envelope conformation with C 10 b occupying the flap position at a distance of 0.382 (3) \AA from the plane of $\mathrm{C} 1, \mathrm{O} 2, \mathrm{C} 3$ and N4.

Each molecule of (1) is involved in two intermolecular hydrogen bonds. One hydrogen bond between O7H 7 and Ol results in a chain of molecules extending

